
Descriptions of commonly used terms in cyberattacks
& vulnerabilities

This document gives an overview of terms which are commonly used in lectures related to
cybercrime and attacks. It is intended as a summary of selected topics from the courses 2IMS20
(Cyberattacks, crime and defenses) and 2DMI20 (Software security).

Common vulnerabilities and attack types
GET and POST parameters/requests
HTTP GET requests are intended for requests that do not modify state. POST requests are
intended for requests which do modify state. GET requests have their parameters visible in the
URL; this means that these parameters are stored in browser history, and could also be part of a
link (e.g. one sent via a phishing email). POST request parameters are not visible in the URL of a
page, and hence do not get stored in browser history and cannot be submitted as part of a link.
Instead, they are submitted via forms on a webpage. Still, it must be noted that forms can also be
submitted via another site, which means that, regardless of the request type, CSRF attacks are
possible.

SQL injection
SQL Injection is a vulnerability which occurs in web applications. Typically, SQL injections are
possible because user input is inserted into SQL/database queries via string concatenation. This
allows for specifically crafted user inputs to be interpreted as code instead of data. Given that
attackers often have the ability to provide user input to the application, this effectively allows
attackers to read, manipulate and/or destroy arbitrary data in the database.

There are several ways to prevent SQL injection. The most obvious one is to access the database
using so-called prepared statements. In such statements, the part which is intended to be
interpreted as code is pre-compiled so that it (and only it) is interpreted as code; the user inputs
are filled in as parameters which can only be interpreted as data. Other ways to prevent SQL
injection include filtering user input to ensure it does not contain any characters that could cause
(parts of) the input to be interpreted as code or storing procedures at the database server.

XSS
XSS, or cross-site scripting, is an attack in which attacker-provided JavaScript code is executed
on the victim’s computer, within the context of a site not (intended to be) under the control of the
attacker. This allows the attacker-provided code to access data such as cookies which should
only be accessible to the site which stored that data.

There are two (main) variants of XSS. The first one is stored XSS, in which the attacker-provided
JavaScript is stored on the attacked site, and then served whenever the victim opens the page.
This variant generally occurs whenever attacker-provided inputs are not properly sanitized by the
server before they are stored. A typical example would be a comment form which does not verify
whether the submitted comment does not contain HTML/JavaScript code.

The second variant is reflected XSS. In this variant, the attacker-provided code is not stored on
the attacked site, but is provided by the victim (often in the form of a link with GET parameters) to
the attacked site and then echoed back in the response. It mostly occurs when user inputs are (1)
echoed back to the user and (2) when those inputs are not properly sanitized before being echoed
back.

The most common countermeasure to XSS attacks is to properly sanitize user inputs before
storing them (in the case of stored XSS) or echoing them back (in the case of reflected XSS). The
crucial thing is that <script> tags need to be removed so that the browser cannot interpret the
code as JavaScript.

Usually, the aim of an XSS attack is to read cookies for the attacked site (which can only be done
using a JavaScript provided by that site) to then send them to the attacker.

A third type of XSS is server-side XSS, in which the attacker is able to make the server access a
website/server on their behalf. This usually does not involve JavaScript, but can still be
dangerous, as it allows the attacker to bypass firewalls.

Cookies
SUPERCOOKIES & THIRD-PARTY COOKIES
Supercookies are a term for ‘cookies’ which cannot be deleted through regular means; in fact,
they are not cookies at all. Instead, they are other means through which a website can identify a
recurring user. Originally, the term has mainly been used for headers inserted by ISPs which
identify a user with a unique ID. However, the term can also be used for e.g. IP address-based
tracking or tracking based on HSTS.

Third-party cookies are cookies for third-party resources (i.e. those hosted on a site different to
the one being accessed) which are accessed on a webpage. Although this nowadays depends on
the browser being used, disabling third-party cookies (at some point) only prevented third parties
from storing cookies, and not from accessing cookies already stored. This still allowed for
tracking.

Watering hole attack
A watering hole attack is an attack where the intended victim is not directly infected; instead, a
site/resource commonly accessed by the intended victim is compromised. Then, whenever the
victim accesses this resource, they can be (for example) infected with malware.

The main idea behind this attack is that it may be difficult to directly infect a victim, especially if
they are well aware of phishing and other attacks. However, by instead compromising a site the
victim is likely to visit, it is possible to find an attack vector much easier.

Double & triple extortion
In ransomware, double extortion refers to the attacker strategy where a ransom is requested for
two purposes:

1. Decrypting files, i.e. restoring their availability

2. Not publishing the files, i.e. maintaining their confidentiality.

In triple extortion, not only the compromised organization is asked to pay a ransom; instead, a
ransom is also requested from people whose (sensitive) data has been breached. This allows
cybercriminals to earn more money from a single attack.

Other relevant concepts (for defenders)
Network priority triangles
FOR IT & ICS NETWORKS
For IT networks, the security properties have importance in the following order (from most
important to least important):

1. Integrity

2. Confidentiality

3. Availability

For ICS networks, the order would be:

1. Integrity/Availability (both are equally important)

2. Confidentiality

Cyber kill chain
The cyber kill chain consists of 7 phases:

1. Reconnaissance

2. Weaponization

3. Delivery

4. Exploitation

5. Installation

6. Command & Control (C2)

7. Action on objectives

Living off the land attack
A living of the land attack is an attack where intruders use legitimate software (e.g. Windows
Management Instrumentation, PowerShell) to perform malicious actions on the system. Their main
advantage lies in them being much more difficult to detect. Their disadvantages include speed
and cost.

Living off the land attacks are particularly common to ICS networks; due to the wide variety in
software and protocols in use there, it often does not make sense to create tailor-made malware.

Supply chain attacks
In a supply chain attack, a supplier of the target/intended victim is attacked. The aim is to
introduce a piece of malware in software from the supplier, which then infects the customer of the
supplier (i.e. the target) as soon as the software is updated. Supply chain attacks have 6
advantages:

1. They allow for infecting well-protected networks (since the malware comes in through a

‘trusted’ vector);

2. They spread quickly and on a vast scale through automated updates;

3. They can be targeted to affect certain regions and/or sectors;

4. They allow for infection of isolated networks (i.e. networks not connected to the internet);

5. They are difficult to detect, since the problems originate from ‘trusted’ software;

6. They often allow for privileged access to systems, since software update mechanisms are

often executed with administrative privileges.

Software Bill of Materials
A software bill of materials includes (possibly in machine-readable format) a list of the software a
given piece of software depends on (possibly also indirectly). The aim of a software bill of
materials is to make it easier to manage dependencies, and to make it easier to act quickly when
security vulnerabilities are discovered in one of them, i.e. by updating the vulnerable software. In
particular, a software bill of materials makes it easier to identify vulnerable systems and to act on
that knowledge. Finally, software bill of materials is particularly relevant to IoT systems, since they
suffer from issues such as vendors going out of business, being publicly exposed and being
difficult to patch in general.

Targeted attacks
Stuxnet
Stuxnet was the first piece of malware to target industrial control systems (ICS). It combined
several zero-day vulnerabilities to eventually target Iranian nuclear centrifuges. The attack roughly
consisted of three phases:

1. Spread as a worm

2. Attack Siemens/PLC system

3. Sabotage

We start with the third, and final phase. In that phase, the malware altered the spinning frequency
of centrifuges in nuclear facilities, with the aim to break them. Simultaneously, the malware
provided false feedback to other systems (which were read out by operators) in an attempt to hide
its existence. (In effect, Stuxnet was therefore the first rootkit for a PLC.)

To achieve its goals in the third phase, Stuxnet first had to reach the Siemens PLCs used in the
nuclear facility to control the centrifuges. To do so, it first infected software used to manage said
PLCs in the second stage.

Before that, however, the malware had to reach a computer which used the PLC software to
update the PLCs. For this part, which encompasses the first stage, it behaved like a worm. This
worm spread on its own from infected computers, both via the network (e.g. through Windows
vulnerabilities in, for instance, the print spooler) and via USB sticks (by using a vulnerability
involving LNK (Windows shortcut) files. This latter part was important; since the nuclear facility’s
network was not linked to the internet, it was necessary to use vulnerabilities in USB sticks (or,

more precisely: the software handling those USB sticks) to get onto the target network in the first
place.

One of the unique aspects of Stuxnet is its level of targeting: it only performed its malicious
actions in a very specific system (with equipment from certain manufacturers and centrifuges
operating within a specific frequency range) and left other systems (nearly) intact. This was most
likely done to hide the malware and prevent it from being discovered before it could do its job. In
addition, this (combined with the PLC rootkit) made it much more difficult to detect the malware in
the first place (since equipment failure would be a more likely cause of the issues at hand).

Havex
Havex was a piece of malware which was intended for reconnaissance purposes and to gain
persistent access. It most likely originates from Eastern Europe. It entered systems through e.g.
spear phishing, watering hole and supply chain attacks. It mostly targeted ICS networks (in
particular: energy companies).

BlackEnergy 3
BlackEnergy 3 was a piece of malware used as part of a campaign to cause power outages in
Ukraine in late 2015. Its initial infection vector was spear phishing with malicious Word
documents. Once it got in, it retrieved VPN credentials to access the network more stealthily
(compared to C2). Within the network, malicious firmware was deployed to serial-to-ethernet
devices (to make recovery more difficult). In addition, KillDisk was used to wipe servers. These
two pieces were activated once the attack commenced: at that point, breakers were open to
cause a power outage and communication with customer service was made more difficult by
means of DoS against phone services.

Industroyer
Industroyer was a piece of malware used to cause power outages in Ukraine in late 2016. The
main differences with BlackEnergy 3 include it being more modular and the malware working in a
mostly automated fashion this time.

Industroyer 2
Industroyer 2 is a piece of malware used for similar purposes as Industroyer. Its main difference
lies in its behavior being more targeted: its configuration allows it to specify its behavior according
to the target environment it has handed up in. This makes it easier for the malware to be
applicable in a multitude of environments.s

CryptoLocker
CryptoLocker was the first ransomware which presented a reproducible business case. In other
words, it was the first ransomware thought to be able to make a profit. It appeared in 2013. A trick
used to masquerade CryptoLocker’s executable files in email attachments was to have the files
include double extensions (e.g. document.pdf.exe). It spread over the Gameover ZeuS botnet.

Petya
Petya is a piece of ransomware. Its main distinguish aspect is that it does not encrypt files;
instead, it replaces the master boot record and encrypts the file table of an NTFS volume to make
files unfindable.

WannaCry
WannaCry is a piece of ransomware which appeared in 2017. The main aspect making this
ransomware different from others was that it was able to spread on its own (i.e. it is a worm). For
this, the EternalBlue vulnerability, which was allegedly developed by the NSA, was used.

The initial version of WannaCry was halted rather quickly when a kill-switch domain was
registered and pointed to a sinkhole.

NotPetya
NotPetya is a piece of malware which looks similar in behavior to Petya at first sight. However, in
reality, it is not ransomware, since it uses a random key for encryption. This effectively makes files
non-restorable, which suggests its purpose is to cause disruption instead of earning ransom.

NotPetya mostly spread though a supply chain attack; it was implanted in a software update of a
commonly used Ukrainian accounting package. Like WannaCry, NotPetya used the EternalBlue
exploit to expand its reach.

Triton
Triton is a piece of malware designed to take down/abuse Industrial Safety Systems (ISS) in a
Saudian oil plant. Such ISSs are intended to restore systems to a safe state whenever unsafe
operating conditions are detected.

To prevent unintended program changes, such systems have a (physical) key switch, which needs
to be set to program mode in order to allow for updates to be performed. Still, oftentimes, this
switch is left in program mode to make it easier to perform updates remotely whenever they are
necessary.

The eventual aim of the attacker was most likely to cause an unsafe state in the system, or, in 1

other words, to cause physical damage to the plant itself. The attack consisted of several phases:

1. Initial access to IT network. Several backdoors and/or C2 servers were installed.

2. Execute a program which poses as the legitimate engineering software, but which actually

executes Python code (compiled with py2exe) for executing the next stage of the attack.

3. Execute ‘shellcode’

1. Verify target memory & create a new program (marked with some structure) in the
controller.

2. Implant an installer (bin file included with malicious program).

3. Execute the installer to implant a backdoor (the other bin file included with the malicious

program).

4. Never actually performed: cause trouble.

The attack, which took place over several years, was eventually discovered because 3 main
processes run in parallel. They check whether their memory is consistent from time to time, and
(partially) shut down the system if not. After some shutdowns occurred repeatedly, this led to an
investigation which discovered the malware.

Mitigations for Triton include connecting the controllers only to necessary networks, switching the
controller to program mode only when necessary and signing programs with certificates.
Alternatively, monitoring and/or detection could be performed by providing rules which detect the
malware, through logging or by performing configuration and network analysis.

Maastricht University ransomware attack
In late 2019, Maastricht University was attacked by ransomware. The attack started with a
phishing email that delivered a Microsoft Office file with macros that installed malware. After that,
several exploits were employed for lateral movement. Just before Christmas, the actual
ransomware attack was deployed, which also disabled antivirus as it did its work. Only Windows
domain-joined systems were affected, which included backup systems. Eventually, Maastricht
University was ‘forced’ to pay the ransom.

Colonial Pipeline ransomware attack
In May 2021, Colonial Pipeline was attacked with ransomware. The attackers initially got in
through a compromised password. The attack, which quickly led to oil shortages, led to a national
emergency in the US.

Equifax hack
In 2017, credit bureau Equifax was hacked. The attackers initially got in through a vulnerability in
outdated Apache software, which allowed for direct and opportunistic attacks. This attack led to

 We do not know this for sure, since the attacker was never able to perform their attack; they 1

were discovered prior to being able to execute their attack.

sensitive data of many US and UK people being leaked. One of the main issues in this case is that
the customers of data brokers like Equifax are the companies paying for access to data (and not
the individuals whose private data is being stored). This leads to perverse incentives to not care
about cybersecurity.

	Common vulnerabilities and attack types
	Targeted attacks

